CHROM. 17 553

GAS CHROMATOGRAPHIC SOLUTE-SORBENT INTERACTIONS ON MA-CROPOROUS METHACRYLATE ION EXCHANGERS

J. HRADIL* and F. SVEC

Institute of Macromolecular Chemistry, Czechoslovak Academy of Sciences, 162 06 Prague 6 (Czechoslovakia)

and

N. M. GOGITIDZE and T. T. ANDRONIKASHVILI

Laboratory of Chromatography, Institute of Physical and Organic Chemistry, Academy of Sciences of Georgian SSR, Tbilisi, Jikia 5 (U.S.S.R.)

(First received November 1st, 1984: revised manuscript received January 9th, 1985)

SUMMARY

Solute-sorbent interactions were studied by using the retentions of aliphatic and aromatic hydrocarbons, ethers and alcohols on macroporous methacrylate copolymers (H⁺, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺ and Ag⁺) containing sulphopropyl groups. The individual contributions to the overall Kováts index were calculated by multiple linear regression with parameters characterizing the solute (electron polarizability, dipole moment) and sorbent (surface concentration of groups, ionic radius of the cation). In the case of aromatic hydrocarbons and ethers the contribution of the solute is decisive (98%), while for alcohols the contribution of the sorbent increases to as much as 22%. The results confirm classical views according to which lowpolarity compounds are separated due to non-specific interactions and polar compounds are separated due to specific solute-sorbent interactions. A similar picture of the interactions was provided by correlations in which the solute was characterized by Hammett and Taft substitution constants.

INTRODUCTION

According to the theory of sorption¹, the solute-sorbent interactions may be interpreted in terms of specific and non-specific interactions. There are, however, no quantitative relationships regarding the strength of these interactions and the contribution of the solute and sorbent.

In previous papers^{2,3} we demonstrated the additivity of such contributions in the case of the Kováts indices, I, for a number of solutes. We have now extended those studies by adding further sorbents, which allows the determination of the effect of the sorbent and some generalizations.

Ion exchanger	Name	Specific	Pore volume	SO_3H groups	r
		surface area (m²/g)	(ml g)	Content (mmol/g)	Surface concentration (µmol/m²)
A	G-15-91-SP	117.2	1.246	0.468	3.99
В	G-40-91-SP	82.6	0.787	0.997	12.07
с	G-70-85-SP	30.5	1.227	0.745	24.43

TABLE I PROPERTIES OF METHACRYLATE ION EXCHANGERS USED

EXPERIMENTAL

Materials

Methacrylate ion exchangers were prepared from a macroporous copolymer, glycidylmethacrylate-ethylenedimethacrylate⁴, by reaction of the hydrolyzed copolymer with propanesulphone in an alkaline medium⁵. Their characteristics are summarized in Table I.

Chromatographic measurements

Prior to use, the ion exchangers were washed with a 5% HCl solution and distilled water, LiCl, NaCl, KCl, RbCl, CsCl or AgNO₃ solution, again with distilled water and dried. These sorbents, particle size $180-250 \ \mu$ m, were used as the packings in columns 0.5 m long and 0.3 cm in diameter; they were activated at 170° C for 24 h in a stream of helium (50 ml/min). The retention times of a number of solutes (aliphatic, aromatic hydrocarbons, ethers and alcohols) were determined (at 150° C), from which the retention times relative to pentane and Kováts indices were calculated.

The contributions of the interactions between the solute and sorbent to the values of the Kováts indices were separated by multiple linear regression⁶ with four parameters using a Wang 2200 computer.

RESULTS AND DISCUSSION

The retentions of aliphatic and aromatic hydrocarbons, ethers and alcohols were determined on 21 macroporous methacrylate copolymers (H⁺, Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺ or Ag⁺) with sulphopropyl groups (Table II). The Kováts retention indices calculated from the retention times are given in Table III. The values increase along the homologous series of aromatic hydrocarbons, ethers and alcohols; but the indices of the isomers of alcohols decrease with branching. Increased retentions of methanol and ethanol were observed on sorbent C, especially at temperatures below 100°C. Increased values were also found for unsaturated hydrocarbons on sorbents in the forms Rb⁺ and Ag⁺, and for alcohols on sorbents in the hydrogen form. The results may be employed for practical separation of these compounds.

In our previous work², very good correlations were obtained between the Kováts retention indices and the number of methylene groups and the steric requireRELATIVE RETENTION TIMES (PENTANE REFERENCE) OF SOLUTES ON METHACRYLATE ION EXCHANGERS AT 150°C Sorbents A-C as in Table I.

Solute	Form H ⁺	H^+		Form	Li ⁺		Form Na	Na ⁺		Form	K ⁺		Form	Rb^+	Ε.	Form C	Cs^{+}	Fo	Form Ag	+	
	۲	B	U	V	B	υ	F	B	ں د	F	8	U	V	B	۲ د	8	U T		8	U	
Pentane	1.0	1.0	1:0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	_	_	_	_		[_		- I	0
Hexane	2.3	2.0	2.0	2.7	1.5	2.0	2.3	1.7	1.0	2.7	1.5	2.5			-		-	_			5.0
Heptane	5.7	3.0	2.0	5.7	3.0	3.5	4.5	2.5	1.5	6.0	2.0	3.0	_							_	3.5
Octane	9.7	4.5	5.0	14.3	4.0	5.5	11.3	5.0	2.0	14.0	3.0	6.5	_	_		_	-	-		_	5.0
Nonane	32.0	10.0	7.5	26.0	7.0	7.5	28.0	7.0	3.0	46.3	6.0	13.5	_	_				_			07
Decane	65.3	12.0	14.0	41.0	12.0	11.0	75.5	22.0	7.0	66.3	11.0	27.0	_	_	24.0 5	56.0 1(10.0 4(40.0 68	68.0 10.0	_	23.0
Benzene	4.3	5.5	4.0	4.3	2.5	4.0	4.0	6.0	1.0	4.0	4.0	2.5	5.3	4.0	-	_		~		_	3.0
Toluene	9.0	9.0	5.0	7.7	3.5	7.0	9.2	6.0	1.0	9.3	5.0	4.5	-	-	_				_	_	5.0
p-Xylene	20.0	I	7.0	18.8	6.0	12.5	24.8	6.0	2.0	23.1	5.0	10.0	_		11.5 2	22.4	8.7 10	10.7 23	23.4 8.0	_	10.0
Ethylbenzene	23.0	I	7.0	19.0	5.5	13.0	26.4	8.0	3.0	21.3	6.0	9.5	-	-		_		_	_	_	0 .0
Isopropylbenzene 1,2,4-Trimethyl-	40.5	7.5	8.0	39.0	7.0	19.0	55.2	10.0	4.0	32.5	7.0	14.0	_	_	-			_		_	5.0
benzene	68.7	11.5	14.0	41.0	7.3	23.0	85.0	14.0	6.0	53.0	8.0	19.0	37.7	0.6	27.0 5	56.0 1	10.0 2	21.3 8	82.8 14.0	-	22.5
Methanol	1.0	6.5	22.0	1.3	10.8	23.3	1.4	8.5	8.0	1.0	5.0	29.0	1.0	-			_		_		17.0
Ethanol	1.8	10.0	48.0	3.0	12.0	15.0	2.2	10.5	11.0	2.5	6.0	35.0	2.2	_	_	-	_			•••	2.5
Propanol	5.0	16.5	80.0	5.3	19.0	7.0	6.2	19.0	3.0	4.8	9.5	16.0	5.0	_		-					0.0
n-Butanol	9.0	30.0	I	18.0	31.0	11.0	13.4	35.0	5.0	13.0	19.0	16.0	11.3	_	_		-		_		2.5
Isobutanol	8.0	15.0	I	13.0	10.0	8.0	11.0	18.5	3.2	8.5	11.0	13.5	87.0	_							7.0
tertButanol	1.0	5.0	I	6.0	5.0	5.0	6.0	5.5	2.0	5.5	4.0	6.5	5.3	5.5	11.0		4.7		_		5.0
Diethyl ether	2.3	2.5	4.7	1.5	3.0	1.5	1.4	4.5	1.0	1.5	1.3	1.5	1.7		_	1.6	-	2.0	1.8	2.5	1.5
Di(isopropyl) ether		1.5	2.0	3.5	2.0	3.5	7.2	1.8	1.5	4.5	2.0	4.0	3.7	2.0	4.0		2.0				3.0
Di-(n-butyl) ether	30.0	7.5	12.0	29.8	11.0	13.0	38.4	8.0	4.5	34.3	6.0	16.0	28.3								4.5
																					I

Solute	Form .	+ <i>H</i>		Form Na ⁺	Na ⁺		Form K ⁺	K ⁺		Form Rb ⁺	Rb ⁺		Form Cs ⁺	t ℃		Form Ag ⁺	A8+	
	¥	B	c	¥	B	c	W W	8	C	R R	a	c	Y	89	U	F	8	U U
Benzene	868	826	776	683	853	200	649	80 <u>4</u>	89	724	800	714	674	8	631	60 <u>1</u>	\$₹	672
Toluene	783	886	800	778	853	200	751	873	752	782	906	811	830	950	002	806	962	766
<i>p</i> -Xylene	860	١	883	80	853	800	840	873	859	922	914	887	889	616	810	845	1000	874
Ethylbenzene	871	١	883	668	910	<u>8</u>	835	<u> 8</u>	852	922	<u> 8</u>	887	90 8	950	778	830	962	841
Isopropylbenzene	930	866	910	967	931	934	869	927	905	960	932	964	942	939	849	907	962	939
1,2,4-Trimethylbenzene	1	1000	1000	ł	961	982	933	946	949	984	779	1017	1000	1000	910	1	1056	766
Methanol	200	846	1086	542	916	1015	500	873	1011	500	932	1045	520	921	80	200	846	954
Ethanol	572	<u>8</u>	1183	594	941	1051	593	806	1041	009	779	1090	573	939	949	589	942	266
Propanol	685	1050	1255	735	988	800	671	779	925	720	1048	1058	681	1015	922	683	1000	858
n-Butanol	783	1078	ł	820	1188	<u>8</u>	789	1155	924	792	1154	1015	839	1176	<u>8</u>	749	1112	<u> 90</u> 6
Isobutanol	761	1055	ł	798	986	<u>908</u>	741	1000	<u>8</u>	769	1098	943	818	1128	818	742	1015	822
tertButanol	200	814	1	733	827	<u> 8</u>	689	840	800	724	878	880	687	875	720	500	846	784
Diethyl ether	600	650	883	542	783	200	542	556	4 5	564	700	0 9	549	756	0 09	568	756	550
Di(isopropyl) ether	685	560	8 9	753	618	200	663	200	737	688	643	710	674	629	651	663	756	672
Di(n-butyl) ether	894	866	575	930	910	948	875	80	924	956	955	933	911	957	856	<u>9</u> 6	962	929

KOVÁTS RETENTION INDICES OF SOLUTES ON METHACRYLATE ION EXCHANGERS AT 150°C Sorbents A-C as in Table I. **TABLE III**

ments of the solute. The fact that the retention indices are correlated with the electron polarizability, α , of the solute molecules^{7,8} indicates the role played by non-specific interactions. Specific interactions will be proportional, among other things, to the dipole moment, μ , of the molecules¹.

The objective of this study was to determine the strength of these interactions and the individual contributions of the solute and sorbent. For this purpose we used multiple linear regression⁵ of the Kováts indices with parameters characterizing the solute (electron polarizability and dipole moment)⁹ and sorbent (content of groups, c_p , and type of cation, R) (Table IV) by means of the relationship:

$$I = I_{\alpha}\alpha + I_{\mu}\mu + I_{c_p}c_p + I_RR$$
⁽¹⁾

The Kováts retention indices are related to thermodynamic quantities, $\Delta\Delta G^{\rm E}(\rm CH_2)$; consequently, this relationship is analogous to the linear free energy relationships used in organic chemistry in the correlation of kinetic data⁵.

The multiple linear regression enabled the separation of the individual correlations. The best fit was found for a dependence between the measured properties and the surface concentration of functional groups $-SO_3^-M^+$, c_p (μ mol/m²), calculated as the ratio of the group content to the specific surface area of the sorbent. The type of cation M⁺ bound was characterized by its ionic radius, R (nm). The multiple linear regression simplifies the problem, as it does not include higher-order interactions between the variables. The calculated values of the coefficients I_{α} , I_{μ} , $I_{c_{\mu}}$ and I_{R} for homologous series of aromatic hydrocarbons, alcohols and ethers are summarized in Table V.

The values of the coefficients vary with the solute and sorbent used, the effect of the solute being the most important. In the series of aromatic hydrocarbons, ethers and alcohols, the coefficient I_{α} corresponding to non-specific interactions decreases while the coefficient I_{μ} related to specific interactions of the solute, *e.g.*, formation of hydrogen bonds in the case of alcohols, increases.

ELECTRON POLARIZABILITY, a, AND DIPOLE MOMENT, µ, OF SOLUTES USED IN EQN. 1

Solute	α · 10 ²³	μ	Solute	α · 10 ²³	μ
Pentane	1.0013	0.0	Benzene	1.0370	0.0
Hexane	1.1835	0.0	Toluene	1.2320	0.36
Heptane	1.3689	0.0	p-Xylene	1.4269	0.0
Octane	1.5520	0.0	1,2,4-Trimethyl-	1.6128	0.59
Nonane	1.7782	0.0	benzene		
Decane	1.9208	0.0	Isopropylbenzene	1.6021	0.79
Average of interval	1.46	0.0		1.30	0.4
Methanol	0.3278	1.70	Diethyl ether	0.8851	1.15
Ethanol	0.5132	1.69	Diisopropyl ether	1.2612	1.21
Propanol	0.6944	1.68	Dibutyl ether	1.6231	1.17
Butanol	0.88779	1.66	-		
Amyl alcohol	1.0626				
Average of interval	0.6	1.62		1.26	1.18

	Solute i	interaction	Sorbent i	nteraction	Aver	age cor	ntributi	on (%,
	$\overline{I_{\alpha}}$	Iμ	Icp	I _R	Ι _α ā	I _μ ũ	I _{cp} ēp	I _R R
Aromatic hydrocarbons*	633	- 90	- 0.23	17	93.9	4.1	0.3	1.6
Ethers**	427	161	1.16	2.5	72.3	25.5	1.9	0.3
Alcohols***	171	356	13.8	-29	12.3	65.9	19.0	2.8

TABLE V

COEFFICIENTS CALCULATED USING EQN	1 AND AVERAGE CONTRIBUTIONS TO THE
KOVÁTS INDICES	

Mean square deviations: * 76.5; ** 86.1;*** 140.0.

Using the averages of the individual contributions to the Kováts indices, it is possible to obtain an idea of the extent of interaction between the solute and sorbent. While with aromatic hydrocarbons and ethers the interactions are almost exclusively those of the solute (about 98%), in the case of alcohols an increasingly important role is played by the sorbent (up to 22%). In this case the type of active group on the sorbent, as characterized by the ionic radius, is more important than its surface concentration.

TABLE VI

Aromati	c hydrocarbon	2.	Ethers			Alcohol.	2	
Exptl.	Calc.*	Calc.**	Exptl.	Calc.*	Calc.**	Exptl.	Calc.*	Calc.**
661	665	198	542	566	522	526	702	262
733	756	652	633	737	791	615	732	555
840	912	633	935	885	628	688	761	503
848	857	588	700	576	561	840	787	523
990	952	633	660	746	829	705	748	677
1000	1003	588	983	895	666	965	815	359
653	663	302	550	590	619	1000	844	651
750	755	733	700	761	888	1100	873	598
872	910	741	1021	909	725	1181	899	619
856	855	692				840	860	774
900	950	733				1094	986	507
904	1001	692				1039	1016	800
600	661	461				878	1045	746
776	752	893				1000	1071	767
1016	908	900				779	1031	922
1021	852	852						
1068	947	897						
1 092	998	852						
_	76.5***	250.1***	_	86.1***	191.6***	_	140.0**	** 328.0**

EXPERIMENTAL AND CALCULATED VALUES OF KOVÁTS INDICES ON COPOLYMERS A-C IN THE LITHIUM FORM

* Calculated by means of eqn. 1.

** Calculated by means of eqn. 2.

*** Mean square deviation.

The separation of the contribution from sorption effects helps us to understand the mechanism of sorption. The results show that interactions occur mainly between molecules of the solute on the polymer surface; in the case of polar molecules, the interaction between the solute and sorbent must also be taken into account.

A similar, though less accurate (as evidenced by the mean square deviations in Table VI) picture of the interactions was provided by a correlation of the Kováts indices with Hammett (σ) and Taft substitution constants (E) characterizing the solute

$$I = I_{\sigma}\sigma + I_{E}E + I_{c_{p}}c_{p} + I_{R}R$$
⁽²⁾

and also by correlation of $\ln t_R$ and $\Delta \Delta G^{\rm E}(\rm CH_2)$.

The results confirm quantitatively the classical views of sorption processes in which low-polarity compounds are separated due to non-specific interactions comprising solute-solute dispersion forces on the surface of the sorbent. In the case of polar compounds, specific interactions take place, *e.g.*, hydrogen bonding in alcohols, giving rise to space where solute-sorbent interactions may occur.

The values of the coefficients of eqn. 1 can be used not only for the evaluation of solute-sorbent interactions, but also for the calculation of unknown Kováts indices by using only a few constants characterizing the solute and sorbent. This may help in the prediction of separation conditions. The contribution of the sorbent, represented by constants I_{c_p} and I_R , in this case is a measure of the sorbent polarity. Such a classification of the polarity of polymeric sorbents is being evaluated.

REFERENCES

- 1 A. V. Kiselev, Zh. Phiz. Khim., 41 (1967) 2470.
- 2 T. G. Andronikashvili, N. M. Gogitidze, J. Hradil and F. Švec, J. Chromatogr., 291 (1984) 103.
- 3 T. G. Andronikashvili, N. M. Gogitidze, J. Hradil and F. Švec, Proceedings of the Academy of Sciences of the Georgian SSR, Chem. Ser., 10 (1984) 67.
- 4 F. Švec, J. Hradil, J. Čoupek and J. Kálal, Angew. Makromol. Chem., 48 (1975) 135.
- 5 O. Exner, Correlation Relationships in Organic Chemistry (in Czech), SNTL, Prague, 1981.
- 6 C. M. A. Ribeiro, J. Hradil, F. Švec and J. Kálal, Angew. Makromol. Chem., 87 (1980) 119.
- 7 J. Hradil and J. Stamberg, Proceedings of the Conference, Makrotest, Pardubice, 1976, p. 115.
- 8 J. Hradil, Chem. Listy, in press.
- 9 M. V. Volkenshte, Jr., Structure and Physical Properties of Molecules (in Czech), Academia Prague, 1962.